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This is an oversimplification.

James: quantum systems are described by “pure states” |Ψ(t)⟩

In practice, we could try to prepare a system in a pure state 
through a measurement → “collapse of the wave function”

In reality measurements are never perfect — because our 
experimental colleagues don’t get enough funding 😉 — so the 
best we can do is to assert that the system could be in any of 
the states |Ψ1⟩, |Ψ2⟩,…, |Ψn⟩ with some probabilities p1, p2,…, pn

How can we accommodate such “real-life” situations?



In the following I will use Dirac notation, which 
is the best way to deal with Heisenberg’s way

of doing QM.

I knew of Heisenberg’s theory, of course, but I felt discouraged, not to say 
repelled, by the methods of transcendental algebra, which appeared 
difficult to me, and by the lack of visualizability. (Schrödinger in 1926)  

If you find this outlandish, you are in good company

The more I think about the physical portion of Schrödinger’s theory, the more 
repulsive I find it. What Schrödinger writes about the visualizability of his 
theory is probably not quite right, in other words it’s crap. (Heisenberg, 
writing to Pauli in 1926) 

The feeling was mutual….



Our workhorse: a single qubit

|Ψ⟩ = c1 | ↑ ⟩ + c2 | ↓ ⟩ = (c1
c2)

| ↑ ⟩ = (1
0) , | ↓ ⟩ = (0

1)
General state = 
superposition

Basis states

A qubit is simply a 2-state system:

Observables =

Operators

𝒪 = ( a b
b* c) , a = a*, c = c*

𝒪 |Ψ⟩ = |Φ⟩

Operators

→ Matrices

operators map states

to other states



Operators in 
ket-bra notation

Tr[𝒪] = Tr ( a b
b* c) = a + c = ⟨ ↑ |𝒪 | ↑ ⟩ + ⟨ ↓ |𝒪 | ↓ ⟩Trace

𝒪 = |Ψ⟩⟨Ψ | is an operator

𝒪 |Φ⟩ = |Ψ⟩ ⟨Ψ |Φ⟩

bra-ket = complex number

iℏ
d
dt

|Ψ(t)⟩ = H |Ψ(t)⟩Dynamics: TDSE

H= Hamiltonian of the system



Schrödinger eqn

Initial state

H =
2ωSx = ℏω (0 1

1 0) if 0 ≤ t ≤ t0

0 if t > t0

Act with a magnetic 

field for some time t0

iℏ
d
dt (c1(t)

c2(t)) = H |Ψ(t)⟩ = ℏω (c2(t)
c1(t))

|Ψ(t > t0)⟩ = cos(ωt0) | ↑ ⟩ − i sin(ωt0) | ↓ ⟩

Can “rotate” the qubit.

Manipulating a qubit

|Ψ(0)⟩ = | ↑ ⟩ = (1
0)

|Ψ(t)⟩ = c1(t) | ↑ ⟩ + c2(t) | ↓ ⟩ = (c1(t)
c2(t))

let it be a spin-1/2

State at time t

ω ∝ B



QM in terms of Density Operators

Pure state |Ψ(t)⟩ ⟺ density operator ρ(t)= |Ψ(t)⟩ ⟨Ψ(t)|

ρ(t) |Φ⟩ = ⟨Ψ(t) |Φ⟩ |Ψ(t)⟩

“overlap”: how close is |Φ⟩ to |Ψ(t)⟩

Expectation value for any 

operator A 

⟨Ψ(t)| A|Ψ(t)⟩ =Tr[ρ(t)A]

ρ(t) encodes all measurable properties of the system, e.g.

Tr(A) = ∑
n

⟨n |A |n⟩ = ∑
n

Ann



Density operators can describe the more general situations 
where we don’t know which pure state the system is in.



“Mixed States”

ρ = ∑
i

pi |Ψi⟩⟨Ψi | “Mixed state”

⟨A⟩ = ∑
i

pi ⟨Ψi |A |Ψi⟩

Want to describe the situation where system could be in any of 
the states |Ψ1⟩, |Ψ2⟩,…, |Ψn⟩ with some probabilities p1, p2,…, pn

⟨A⟩ = Tr[ρA]
Corresponds to density op

This cannot be written as ρ = |Φ⟩⟨Φ |

If |Ψ1⟩, expectation 

value of A would be

⟨A⟩ = ⟨Ψ1 |A |Ψ1⟩



Example: QM at finite temperature

Classical Stat. Mech.: configurations C, associated energy E(C)

⟨⟨𝒪⟩⟩T = ∑
configs C

p(C) 𝒪(C)thermal averages:

Probability of system being 

in configuration C is 

p(C) =
e−E(C)/kBT

∑
configsC

e−E(C)/kBT



H| ni = En| ni
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Example: QM at finite temperature

Quantum Mechanics: configurations → energy eigenstates

⟨𝒪⟩T = ∑
i

pi ⟨Ψi |𝒪 |Ψi⟩
thermal average

of observable O

Corresponding 

density operator

ρ(T ) = ∑
i

pi |Ψi⟩⟨Ψi |

⟨𝒪⟩T = Tr[ρ(T )𝒪]

mixed state

pi =
e−Ei/kBT

∑
i

e−Ei/kBT



Reduced density operators

Mixed states arise from pure states upon “elimination” of 
some degrees of freedom: 

QM System

“Environment”

Tr[ρ𝒪S] ≡ Tr[ρS𝒪S]

• ρ=density operator of S&E

• ask questions only about S:

Tr[ρ𝒪S]
acts only on S 

degrees of freedom

• seek a “reduced” density operator 
involving only S degrees of freedom



Describes generically a mixed state.

Solution ρS = TrE[ρ]

Example: two spins 1/2 |Ψ⟩ =
1

2
[ | ↑ ⟩1 | ↓ ⟩2 + | ↓ ⟩1 | ↑ ⟩2]

ρ1 =
1
2

| ↑ ⟩1 1⟨ ↑ | +
1
2

| ↓ ⟩1 1⟨ ↓ | =
1
2 (1 0

0 1)

ρ =
1
2 [ | ↑ ↓ ⟩⟨ ↑ ↓ | + | ↑ ↓ ⟩⟨ ↓ ↑ | + | ↓ ↑ ⟩⟨ ↑ ↓ | + | ↓ ↑ ⟩⟨ ↓ ↑ |]

Density operator

Reduced density operator



Application: Entanglement measures

Entanglement can be quantified 

“entanglement entropy”

A B

How strongly is A entangled with B ?

ρA |pi⟩ = pi |pi⟩ , pi ≥ 0

Let ρA be the RDO of subsystem A and pi its eigenvalues

SA = − ∑
i

pi ln(pi)

• very similar to definition of thermodynamic entropy

• measures how strongly mixed the RDO is, i.e. degree of 

ignorance about the state A is in



|Ψ⟩ = p | ↑ ⟩1 | ↓ ⟩2 + 1 − p | ↓ ⟩1 | ↑ ⟩2 , 0 ≤ p ≤ 1

S1 = − p ln(p) − (1 − p)ln(1 − p)eigenvalues p, 1-p

ρ1 = p | ↑ ⟩1 1⟨ ↑ | + (1 − p) | ↓ ⟩1 1⟨ ↓ | = (p 0
0 1 − p)

Example:

RDO:

0.2 0.4 0.6 0.8 1.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7S1

p

maximally mixed

state (total ignorance)



|Ψ(0)⟩ = | ↑ ⟩1 | ↑ ⟩2

Consider a spin-1/2 (our qubit) in contact with a second spin-1/2 
(environment)

H =
4J
ℏ

Sx
1Sx

2

initially:

later times: |Ψ(t)⟩ = cos(Jt) | ↑ ⟩1 | ↑ ⟩2 − i sin(Jt) | ↓ ⟩1 ↓ ⟩2

“Entanglement growth”

Recall Sx
j | ↑ ⟩j =

ℏ
2

| ↓ ⟩j , Sx
j | ↓ ⟩j =

ℏ
2

| ↑ ⟩j

Coupling described by 

unentangled

is entangled! (measurement of spin 2 affects that of spin 1)

QM systems generically become more entangled under 

time evolution !



ρ1(t) = cos2(Jt) | ↑ ⟩⟨ ↑ | + sin2(Jt) | ↓ ⟩⟨ ↓ |

Reduced density operator of the qubit:

qubit changes its state with time.

In applications (e.g. ion traps) it is important to counter this

effect and keep the qubit “alive”.

→ ask this afternoon!

Coupling to the environment is bad for applications



SS(t) = − TrS [ρS(t)ln(ρS(t))]Time evolution of entanglement entropy

Large QM System

ρS(t) = TrE[ρ(t)]reduced density op

of the subsystem

density op of S&E: ρ(t)

How entangled is the subsystem with its environment?

Start with an unentangled state

E = Tr[H ρ]

Hamiltonian of S&E: H

energy:

S
E

Entanglement growth and “thermalization”



SS(t)

t

• Entanglement grows linearly in time, then saturates

• SS(∞) proportional to volume VS of subsystem

• SS(∞) related to thermodynamic entropy of system at 

energy E

SS(∞)

SS(∞) =
VS

V
kB ln(Ω(E))

As you may have anticipated, this is not a coincidence…



Ideas of “thermalization” go back to the 
early days of QM [v. Neumann (1929)], but 
the subject has become “hot” only in the last 
decade…

Edward Teller: “von Neumann would carry on a conversation with 
my 3-year-old son, and the two of them would talk as equals, and I 
sometimes wondered if he used the same principle when he talked 
to the rest of us…”

ρS(t) = ρS(T )

This is how QM gives rise to Stat. Mech. !

T fixed by total energy E

• RDO becomes indistinguishable from a Gibbs ensemble

S

E
“Environment” serves as a heat bath for S.



Summary

1. Need concept of mixed states to account for inaccessible 

information in QM systems.


2. These are described by (reduced) density operators.


3. RDOs give a way of quantifying entanglement.


4. Entanglement grows under time evolution.


5. Macroscopic systems become locally thermal over time: 

Quantum Mechanics ⇒ Statistical Mechanics.

Thank you for your attention !


